
IEEE Transactions on Nuclear Science, 45(6):3007–3013, 1998 (preprint)

Kinetic Parameter Estimation from Attenuated SPECT Projection Measurements1

BW Reutter†, Member, IEEE; GT Gullberg‡, Senior Member, IEEE;
and RH Huesman†, Senior Member, IEEE

† Center for Functional Imaging, Lawrence Berkeley National Laboratory
University of California, Berkeley, CA 94720, USA

‡ Department of Radiology, University of Utah, Salt Lake City, UT 84132, USA

Abstract

Conventional analysis of dynamically acquired nuclear
medicine data involves fitting kinetic models to time-activity
curves generated from regions of interest defined on a
temporal sequence of reconstructed images. However,
images reconstructed from the inconsistent projections of a
time-varying distribution of radiopharmaceutical acquired by a
rotating SPECT system can contain artifacts that lead to biases
in the estimated kinetic parameters. To overcome this problem
we investigated the estimation of kinetic parameters directly
from projection data by modeling the data acquisition process.
To accomplish this it was necessary to parametrize the spatial
and temporal distribution of the radiopharmaceutical within the
SPECT field of view.

In a simulated transverse slice, kinetic parameters were
estimated for simple one compartment models for three
myocardial regions of interest, as well as for the liver.
Myocardial uptake and washout parameters estimated by
conventional analysis of noiseless simulated data had biases
ranging between 1–63%. Parameters estimated directly from
the noiseless projection data were unbiased as expected, since
the model used for fitting was faithful to the simulation.
Predicted uncertainties (standard deviations) of the parameters
obtained for 500,000 detected events ranged between 2–31%
for the myocardial uptake parameters and 2–23% for the
myocardial washout parameters.

I. I NTRODUCTION

Conventional analysis of dynamically acquired nuclear
medicine data involves fitting kinetic models to time-activity
curves generated from regions of interest (ROIs) defined on a
temporal sequence of reconstructed images. Since dynamic
single photon emission computed tomography (SPECT)
data acquisition involves gantry motion and the distribution
of radiopharmaceutical changes during the acquisition,
projections at different angles come from different tracer
distributions. Images reconstructed from these inconsistent
projections can contain artifacts that lead to biases in the
estimated kinetic parameters. The artifacts can be particularly
problematic in images reconstructed from projections acquired
during the early time frames of a dynamic study when the

1This work was supported by U.S. Department of Health and
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tracer distribution is changing most rapidly (Figure 1).
To overcome this problem we investigated the estimation of

kinetic parameters directly from projection data by modeling
the data acquisition process of a time-varying distribution of
radiopharmaceutical detected by a rotating SPECT system. To
accomplish this it was necessary to parametrize the spatial and
temporal distribution of the radiopharmaceutical within the
SPECT field of view.

This approach is potentially useful for clinical studies,
particularly in those clinics which have only single detector
SPECT systems and thus are not able to perform rapid
tomographic acquisitions. Even with a three-detector system,
a patient study that utilizes body contouring orbits can take
45–60 sec to obtain one full tomographic acquisition. Thus, the
estimation of kinetic parameters directly from projection data
may be useful even for multi-detector SPECT systems in some
cases.

Direct estimation of kinetic parameters from projections
has become an active area of research. Chiao et al. [1, 2]
have jointly estimated myocardial ROI boundaries and
one-compartment kinetic model parameters directly from
simulated positron emission tomography (PET) projections.
Limber et al. [3] have fit single decaying exponentials to
each pixel in a 16×16 array directly from simulated SPECT
projections. We have fit one-compartment models to ROIs
encompassing a 3×3 array directly from simulated SPECT
projections, by first estimating the exponential factors using
linear time-invariant system theory and then estimating the
multiplicative coefficients using linear estimation [4].

Estimation of ROI time-activity curves from projections
has been investigated. Huesman [5] has described a method to
estimate the average activity in a 2-D ROI, and Defrise et al. [6]
have extended these ideas to 3-D. To compensate for physical
factors such as attenuation and detector resolution, Carson [7]
has described a method for estimating activity densities
assumed to be uniform in a set of ROIs using maximum
likelihood, and Formiconi [8] has similarly used least squares.

The work presented here builds on the work of Carson
and Formiconi, as well as on simulations which we have
performed in 2-D and 3-D using idealized non-attenuating
phantoms [4, 9, 10]. In this 2-D simulation we use the more
realistic mathematical cardiac torso (MCAT) phantom [11] and
include the effects of attenuation. We compare the estimation
of kinetic parameters directly from projections with estimation
from tomographic determination of time-activity curves, for
three myocardial ROIs and for the liver.
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Fig. 1 Artifacts are apparent in the upper sequence of images reconstructed from the inconsistent projections of a relatively rapidly changing
tracer distribution acquired during the early uptake and washout time frames of a simulated dynamic SPECT study. The lower sequence of
images is obtained when the tracer distribution does not change during the time frames.

II. ESTIMATION OF KINETIC PARAMETERS

DIRECTLY FROM PROJECTIONS

We formulate a nonlinear estimation problem using a
spatial and temporal parametrization of the time-varying
distribution measured with a single rotating detector SPECT
system. The one-compartment model shown in Figure 2 is
assumed for simulated myocardial and liver tissue with a
known blood input function, which would correspond to the
kinetics of teboroxime [12, 13, 14]. Parameters are estimated
by minimizing a weighted sum of squared differences between
the projections and the model predicted values.

The expression for uptake in tissue typem is

Qm(t) = km
21

∫ t

0

B(τ)e−km
12(t−τ)dτ = km

21V
m(t), (1)

whereB(t) is the known blood input function,km
21 is the uptake

B(t)
km
21

km
12

Qm(t)

Fig. 2 Compartmental model for99mTc-teboroxime in the
myocardium.

parameter, andkm
12 is the washout parameter. Total activity in

the tissue is given by

Qm(t) + fm
v B(t) = km

21V
m(t) + fm

v B(t), (2)

wherefm
v is the fraction of vasculature in the tissue.2

This analysis starts with an image in which all volume
elements (voxels) within the body are segmented into blood
pool, M tissue types of interest, and background. In order to
obtain tissue boundaries, the patient is assumed motionless
during data acquisition, and a reconstructed image (for
example, via the projections at the time of strongest signal,
or via the summed projections) is segmented to provide
anatomical structure. The image intensity at each segmented
region is not used. Each voxel outside the body is modeled
to have zero activity concentration (even if its reconstructed
image intensity is non-zero) and therefore does not contribute
events to the modeled projections. Similarly, a voxel within
the body thought to have zero activity concentration could be
modeled as such by not labeling the voxel as either blood pool,
one of theM tissue types of interest, or background.

Using the segmented image and a measured attenuation
distribution, the attenuated static projections of the blood

2Total tissue activity is often modeled as(1 − fm
v )k′m21V

m(t) +
fm

v B(t). This model yields the identical solution as equation (2),
i.e., the same modeled projections are obtained when the weighted
sum of squared differences between the measured and the modeled
projections is minimized. The relationship betweenk′m21 andkm

21 is
k′m21 = km

21/(1− fm
v ).
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Fig. 3 Attenuated static projections of the ROIs in the MCAT phantom shown in Figures 4 and 5. These are the sinograms that would be
observed for each region, given a static unit concentration of activity within the region.

pool, tissue, and background regions are calculated for
each projection ray of each projection angle. These are the
sinograms that would be observed for each region, given a
static unit concentration of activity within the region. With no
attenuation, the static projections correspond to the lengths
of the blood pool, tissue, and background regions along each
projection ray of each projection angle. When projecting the
regions, other physical factors such as scatter and geometric
point response can be modeled, although we have not done so
in this simulation.

The number of projection rays per projection angle is
denoted byN , the number of projection angles per gamma
camera rotation byJ , and the number of gamma camera
rotations byI. Thus, there are a total ofI · J · N projection
rays distributed in time and space. For a typical projection ray
at anglej and positionn, the attenuated static projections of
the blood pool, background, and tissuem are denoted byujn,
vjn, andwm

jn, respectively. Figure 3 shows the attenuated static
projections of the ROIs in the MCAT phantom (Figures 4 and 5)
used in the computer simulations described in Section III. The
amplitude of the background activity is denoted byg, and the
background is assumed to be proportional to the blood activity.
The projection equations can be expressed as

pijn =
∫ tij

tij−∆t

{
ujnB(τ) + vjngB(τ)

+
M∑

m=1

wm
jn [km

21V
m(τ) + fm

v B(τ)]

}
dτ ,

(3)

where the timetij is equal to[j + (i − 1)J ]∆t. The constants
ujn, vjn, andwm

jn are pure geometrical weighting factors, and
the projection equations are linear in the unknownsg, km

21, and
fm

v . The nonlinear parameters,km
12, are contained inV m(t).

The criterion which is minimized by varying the model

parameters is the weighted sum of squares function

χ2 =
I∑

i=1

J∑
j=1

N∑
n=1

(p∗ijn − pijn)2

Wijn
, (4)

where p∗ijn are the measured data andWijn are weighting
factors. Typically, the weighting factors are either unity for an
unweighted fit, or the estimated variances of the projections for
a weighted fit.

As discussed above, equation (3) is a linear function of the
parametersg, km

21, andfm
v . Therefore the model it describes

is called a conditionally linear, partially linear, or separable
nonlinear model [15, 16]. We now describe the technique that
we have used to remove the conditionally linear parameters so
that equation (4) can be considered to be a function of only the
nonlinear washout parameters,km

12.
The washout parameters are denoted by the vector

λ =
[
k1
12 · · · kM

12

]T
(5)

and the multiplicative parameters by the vector

µ =
[
g k1

21 · · · kM
21 f1

v · · · fM
v

]T
. (6)

During the time interval fromtij −∆t to tij (corresponding to
the jth projection angle acquired during theith rotation), the
attenuated static projections of the blood pool, background, and
tissue typem along each of theN projection rays are denoted
by the vectors

uij =
[
uj1 · · · ujN

]T
, (7)

vij =
[
vj1 · · · vjN

]T
, (8)

wm
ij =

[
wm

j1 · · · wm
jN

]T
, (9)

respectively. The modeled values for the projections acquired
during this time interval are denoted by the vector

pij =
[
pij1 · · · pijN

]T
(10)
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Fig. 4 MCAT emission phantom
used in simulation.

Fig. 5 MCAT attenuation phantom
used in simulation.
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Fig. 6 Simulated time-activity
curves for regions of interest.

and the entire set ofI · J ·N modeled projections is denoted by
the vector

p =
[
pT

11 · · · pT
1J · · · pT

I1 · · · pT
IJ

]T
. (11)

The corresponding entire set of measured projections is denoted
by the vectorp∗.

Equation (3) can now be written as the set ofI · J · N
equations

Rµ = p̃, (12)

where

R=




v11B11 w1
11V
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(13)

and

p̃ = p −




u11B11
.
.
.

u1JB1J
.
.
.

uI1BI1
.
.
.

uIJBIJ




. (14)

The corresponding entire set of measured projections with
modeled blood pool contributions subtracted is denoted by
the vectorp̃∗. In equations (13) and (14),Bij and V m

ij are
time integrals of the known blood input function and the
modeled shape of the tissuem time-activity curve defined in
equation (1), respectively:

Bij =
∫ tij

tij−∆t

B(τ)dτ , (15)

V m
ij =

∫ tij

tij−∆t

V m(τ)dτ

=
∫ tij

tij−∆t

[∫ τ

0

B(τ ′)e−km
12(τ−τ ′)dτ ′

]
dτ .

(16)

Equation (4) can now be written as

χ2 = (p̃∗ −Rµ)TW(p̃∗ −Rµ), (17)

where W is a diagonal matrix with the reciprocals of the
weighting factorsWijn along the diagonal. Given the blood
input functionB(t) and values for the washout parametersλ,
the criterionχ2 is minimized by the multiplicative parameters

µ = (RTWR)−1RTWp̃∗. (18)

Substituting equation (18) into (17), the criterionχ2 can be
written as

χ2 = p̃∗TWp̃∗ − p̃∗TWR(RTWR)−1RTWp̃∗, (19)

where now the criterionχ2 depends only on the washout
parametersλ that enter nonlinearly via the matrixR. To
optimize a fit based explicitly on all of the model parameters,
the form of equation (17) can be used.

The covariance matrix for the resulting model parameter

estimateŝΘ =
[
λ̂T µ̂T

]T
is

cov(Θ̂) = (MTWM)−1MTWcov(p∗)WM(MTWM)−1,
(20)

where cov(p∗) is the covariance matrix for the measured
projections and the matrixM contains the partial derivatives of
the modeled projections with respect to the model parameters,
evaluated at̂Θ:

M =
∂p
∂Θ

∣∣∣∣
Θ=Θ̂

. (21)

Given an estimate of cov(p∗), estimates of the statistical
uncertainties of the parameter estimatesΘ̂ are the square roots
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noiseless inconsistent data noiseless consistent data
(a) (b) (c) (d) (e) (b′) (c′)

simulated conventional Formiconi direct direct conventional Formiconi
uncertainty

k1
21 0.700 0.665 0.767 0.700 0.010 0.669 0.700

normal myocardium k1
12 0.150 0.149 0.162 0.150 0.002 0.152 0.150

f1
v 0.150 0.160 -0.032 0.150 0.023 0.187 0.150

k2
21 0.300 0.112 0.314 0.300 0.074 0.291 0.300

septal defect k2
12 0.300 0.116 0.286 0.300 0.065 0.279 0.300

f2
v 0.100 0.394 0.110 0.100 0.105 0.134 0.100

k3
21 0.500 0.218 0.096 0.500 0.151 0.480 0.500

lateral defect k3
12 0.600 0.247 0.214 0.600 0.133 0.467 0.600

f3
v 0.100 0.278 0.199 0.100 0.131 0.137 0.100

k4
21 0.900 0.924 0.888 0.900 0.005 0.923 0.900

liver k4
12 0.0020 0.0020 0.0006 0.0020 0.0007 0.0020 0.0020

f4
v 0.200 0.236 0.325 0.200 0.013 0.198 0.200

background g 0.200 0.200 0.201 0.200 0.001 0.199 0.200

Table 1

Results of kinetic parameter estimation from noiseless inconsistent projections: (a) simulated values; (b) values from dynamic reconstructions;
(c) values from direct estimation of region time-activity curves [8]; (d) values from direct estimation from projections; (e) predicted uncertainties
(standard deviations) of values from unweighted direct estimation for 500,000 detected events using equation (20). Results of kinetic parameter
estimation from noiseless consistent projections: (b′) values from dynamic reconstructions; (c′) values from direct estimation of region time-
activity curves [8]. Units for uptakekm

21 and washoutkm
12 are min−1, and the vascular fractionfm

v and background amplitudeg are dimensionless.

of the diagonal elements of the covariance matrix given by
equation (20).3

III. C OMPUTERSIMULATIONS

A transverse slice of the MCAT phantom was used in a
simulation to evaluate the ability to estimate kinetic parameters
directly from attenuated SPECT projection data. The simulated
emission distribution, shown in Figure 4, contained blood,
background, liver, and three myocardial regions of interest
(normal myocardium, septal defect, and lateral defect). The
emission distribution was assumed to be attenuated using
the attenuation distribution shown in Figure 5, calculated for
140 keV. The attenuation coefficients were 0.16 cm−1 for soft
tissue, 0.14 cm−1 for breast, 0.045 cm−1 for lung, 0.21 cm−1

for rib and transverse processes of spine, and 0.17 cm−1 for
vertebral body. The blood input function and the simulated
tissue activity curves are shown in Figure 6.

There were 13 parameters to estimate: the amplitudes,
washout rates, and vascular fractions for the liver and the
three myocardial regions and the amplitude of the overall
background. Using these 13 parameters, the known blood
input function, and the known segmentation of the MCAT
phantom, a dynamic sinogram was formed representing the
attenuated projections of the six constituent components
(blood, background, liver, normal myocardium, septal defect,

3The variance of the uptake parameterk̂′m21 = k̂m
21/(1− f̂m

v )
discussed in footnote 2 can be estimated as follows [17]:

var(k̂′m21)

(k̂′m21)2
=

var(k̂m
21)

(k̂m
21)

2
+

var(f̂m
v )

(1− f̂m
v )2

− 2cov(k̂m
21, f̂

m
v )

k̂m
21(1− f̂m

v )
.

lateral defect), which comprise the image volume. The
15 min data acquisition protocol consisted of 15 revolutions
of a single-head SPECT system, acquiring 120 angles per
revolution and 64 parallel projection samples per angle. The
projection bin width was 7 mm. Neither scatter nor geometric
point response were included in the simulation.

The four washout parameters were estimated by minimizing
the unweighted sum of squared differences between the
noiseless simulated projection data and the model predicted
values given by equation (19), using a modified iterative
Newton-Raphson optimization algorithm [15, 16]. In
equation (19), the vector̃p∗ contained 115,200 measured
projections with modeled blood pool contributions subtracted,
the weighting matrixW was an identity matrix, and the matrix
R had dimensions 115,200×9. The washout parameters
entered nonlinearly via columns 2–5 of the matrixR. Starting
with all of the washout parameters at zero, it took 10 iterations
to converge to the parameter values used to simulate the
projections. Each unweighted fit iteration took 2.0 min
on a 150 MHz MIPS R10000-based Silicon Graphics O2
workstation.

The results of the noiseless simulation are shown in Table 1
and Figure 7. Direct parameter estimation from noiseless
inconsistent projections (column d of Table 1) was compared
with estimation from dynamic reconstructions (column b).
Fifteen 41×41 attenuation corrected reconstructions (one for
each 1 min time frame) were formed by using 30 iterations of
the conjugate gradient algorithm [18]. Thirty iterations were
sufficient to assure that the reconstructions had converged.
Line-length weighting was used in the formulation of the
projections. The reconstructed pixel dimensions were 1.5 times



IEEE Transactions on Nuclear Science, 45(6):3007–3013, 1998 (preprint)

0

0.2

0.4

0.6

0.8

1

1.2
k2

1 
(1

/m
in

)

  

inconsistent data
direct

consistent data

C F C F

main
myocardium

C F C F

septal
defect

C F C F

lateral
defect

C F C F

liver

conventional C
Formiconi F

uptake parameters

0

0.2

0.4

0.6

0.8

k1
2 

(1
/m

in
)

 1/(100min)

inconsistent data
direct

consistent data

C F C F

main
myocardium

C F C F

septal
defect

C F C F

lateral
defect

C F C F

liver

conventional C
Formiconi F

washout parameters

Fig. 7 Estimated values for the uptake parameterskm
21 (left) and the washout parameterskm

12 (right). The gray bars depict the estimates obtained
from conventional and Formiconi analyses of noiseless inconsistent projections (columns b and c in Table 1). The white bar depicts the unbiased
estimate (i.e., the simulated value) obtained directly from the projections, along with its predicted uncertainty (standard deviation) for an
unweighted fit of 500,000 detected events using equation (20). The black bars depict the estimates obtained from conventional and Formiconi
analyses of noiseless consistent projections (columns b′ and c′). Note that the units for the liver washout parameter,k4

12, are (100 min)−1.

the projection bin width (i.e., 10.5×10.5 mm). Images
reconstructed from the noiseless inconsistent projections for
the first three time frames are shown in the upper sequence
of Figure 1. ROIs were defined by taking all homogeneous
blood pool, background, and liver pixels, as well as all pixels
containing at least 90% of one of the three myocardial tissue
types. Direct parameter estimation from projections was also
compared to the direct estimation of region time-activity curves
(column c) using the method proposed by Formiconi [8].

Parameter estimates obtained from conventional analysis
of noiseless inconsistent projections had biases ranging
between 5–63% for the myocardial uptake parameters and
1–61% for the myocardial wash-out parameters. The large
biases in the septal and lateral defects are not unexpected
considering the long tomographic acquisition times of 1 min.
The estimates using Formiconi’s method had less bias in the
septal defect and more bias in the normal myocardium and the
lateral defect, compared to the conventional method.

The difference in bias between the conventional and
Formiconi methods was due to the differing nature of the
artifacts in the dynamic image reconstructions and the directly
estimated time-activity curves. Both contained artifacts due to
the inconsistent projections, because the image reconstruction
and the direct time-activity curve estimation are based on
a temporal model in which the activity concentrations are
constant during the course of each revolution of the SPECT
system. The image reconstructions contained additional
artifacts (even with temporally consistent projections) due to
the limited resolution of the voxels used to model the field of
view. The Formiconi method, however, used a spatial model
for fitting which was faithful to the simulation.

Parameters estimated directly from the noiseless projection
data were unbiased as expected, since both the temporal and

spatial models used for fitting were faithful to the simulation.
The uncertainties (standard deviations) of the parameters
obtained from an unweighted fit of 500,000 detected events
were predicted using equation (20) with an identity matrix
for the weighting matrixW. The predicted uncertainties
(column e) ranged between 2–31% for the myocardial uptake
parameters and 2–23% for the myocardial washout parameters.
To assess the potential improvement in kinetic parameter
precision resulting from a weighted fit based on the estimated
covariance of the projection data, the inverse of the known
covariance matrix for the simulated projections was also used
as the weighting matrixW in equation (20). For 500,000
detected events this reduced the average predicted variance of
the estimated parameters by about 30% for the myocardial
uptake parameters and about 40% for the myocardial washout
parameters.

Parameter estimates were also obtained from noiseless
projections forced to be consistent over the 1 min time frame
of the simulated dynamic data acquisition. Over the course
of each revolution of the SPECT system, the activity in each
region was held constant at the average of the continuously
varying value that yielded the inconsistent projections. Images
reconstructed from the noiseless consistent projections for the
first three time frames are shown in the lower sequence of
Figure 1. For the conventional analysis the biases changed very
little for the main myocardium and were reduced substantially
for the septal and lateral defects (column b′). The estimates
obtained using Formiconi’s method were unbiased for the
forced consistent projections as expected (column c′), since
now both the temporal and spatial models used for fitting were
faithful to the simulation.

Lastly, noisy projection data sets containing 250,000,
500,000, and 1 million detected events were simulated.
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Multiple local minima were not encountered regardless of
count level, when performing an unweighted fit starting with
all of the washout parameters at zero or at the values used to
simulate the projections.

IV. SUMMARY

The combination of gantry motion and the time-variation
of the radiopharmaceutical distribution being imaged results in
inconsistent projection data sets. Estimating kinetic parameters
from time-activity curves taken from reconstructed images
results in biases. Some of these biases are reduced and some
are increased if the time-activity curves are estimated from
the projection data [8]. Estimating the kinetic parameters
directly from the projections removes all bias for faithfully
modeled noiseless data. Implementation of this strategy
requires a spatial and temporal model of the distribution of
radiopharmaceutical with the SPECT field of view.

The estimation of kinetic parameters directly from
projection data is potentially useful for clinical SPECT studies,
particularly those which use a single detector system or
body contouring orbits with a multi-detector system. Future
work in this area includes incorporating additional physical
factors such as scatter and geometric point response in the
modeling, developing computationally efficient methods
for segmenting the SPECT field of view and parametrizing
non-uniform activity concentrations within the resulting ROIs,
and performing weighted fits based on the covariance of the
modeled projections. A weighted fit can be performed to
improve the precision of the estimated kinetic parameters, or
to maintain precision comparable to that obtained from an
unweighted fit while reducing the patient dose.
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